GENETICS OF BLOOD TYPES (CO-DOMINANCE AND MULTIPLE ALLELES)

*	Co-Dominance	e occurs when both	in	the genotype are
	equally domina			<i>5</i> 71
♦	Multiple Allele	es occurs when	than 2 gen	nes/alleles determine a
	characteristic, s	such as in ABO blood gr	oups.	
*	Example of Al	BO Blood Types		
	There are	different blo	od types – \mathbf{A} , \mathbf{B} , $\mathbf{A}\mathbf{I}$	B and O.
	BLOOD	GENOTYPE	ANTIGEN	ANTIBODY
	<i>TYPE</i>		PRESENT	PRODUCED
	OR			
PŁ	IENOTYPE			
	\boldsymbol{A}	AA or AO	A	Anti-B
	В	BB or BO	В	Anti-A
	AB	AB	A and B	none
	0	00	none	Anti-A and Anti-B
	the children are	type AB and Dad has be a O A O A O A O A O A O A O A O A O A O	A B O BO	ossible blood types of
	½ the children blood type.	will be blood	d type, and the other	1/2 will be
♦	Example 2 – B	slood Types		
	Mum has A blood types	blood type and Dad has are	s AB blood type. Th	e possible children's
	First Possil	<u>bility</u>		
	D 111	A A B A	A AA	
	Possible ph	notypes = 1 AA : 1 AB enotypes = 1 A : 1 AB ren will have blood type	, and the o	other ½ will have blood

Second Possibility

	A	O
A	AA	AO
В	AB	ВО

	Possible genotypes =1AA:1AO:1AB:1BO	
	Possible phenotypes = $2 A$: $1 AB: 1 B$	
	½ will have blood type, ¼ will have blood type AB, and ¼ will have blood type	
	ANTIGENS AND ANTIBODIES IN ABO BLOOD TYPES	
>	The blood type is so-called because the blood contains particular	
	A, B, both A and B, or neither A nor B.	
•	The body's immune system produces to neutralise any particle	
(e.g. bacteria, dust, foreign blood in transfusions) that it recognises as foreign		
	example, if blood type A contains Antigen A, then it will produce antibodies	
	against B blood type (Anti-B Antibody), because B antigens are foreign.	
	Similarly, if blood type O contains antigens A nor B, then a	
	person with blood type O would produce anti-A and	
	antibodies.	
•	Agglutination or 'Clumping' – If antigen-A came in contact with the antibody	
	against it (Anti-A), then the blood would clump or This	
	could occur in an incorrect blood transfusion.	
•	<u>Universal Recipient</u> – This is a person with blood type who can receive a	
	blood transfusion from any of the other blood types.	
•	<u>Universal Donor</u> - This is a person with blood type who can donate	
	blood to any other blood type.	

COMPLETE DOMINANCE OR DOMINANT-RECESSIVE INHERITANCE (AN EXAMPLE OF RHESUS FACTOR IN ABO BLOOD TYPES)

♦	The ABO blood types are sub-divided into positive and	types also.
	depending on whether that blood type does or does not contain	the Rhesus Factor.

•	If the Rhesus Factor is present, the genotype contains one or two R genes/alleles.
	If the Rhesus Factor is absent, the genotype is

Blood	ABO	Rhesus	ABO	Rhesus
Type	Antigens	Antigens	Genotype	Genotype
	Present	Present		
A+	A	yes	Aa or AO	RR or Rr
A-	A	no	AA or AO	rr
B +	В	yes	BB or BO	RR or Rr
B -	В	no	BB or BO	rr
AB+	A and B	yes	AB	RR or Rr
AB-	A and B	no	AB	rr
<i>O</i> +	none	yes	00	RR or Rr
0-	none	no	00	rr